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Introduction

It is widely known that cancer is a genetic disease. The DNA in tumor cells exhibits
extensive structural variation in the form of insertions, deletions, inversions,
translocations and focal amplifications. Some of these are causative "driver mutations"
whereas others reflect genomic instability. Recent studies have examined the
prevalence of such variations in breast cancer, however the role these play in early vs.
late stages of breast cancer evolution, and the mechanisms by which they arise, remain
relatively unknown.

With this research plan we aim to elucidate the role and mechanisms of genomic
structural variation (SV) in the context of breast tumor progression. Using whole
genome sequencing and computational methods we shall compare the SV profile of
several tumors in different stages of cancer progression.

Body

Our hypothesis is that each tumor arises from a single somatic cell that acquires
cancerous mutations, and in a population these mutations accumulate as the tumor
progresses. Using the massively parallel next generation sequencing technologies (NGS),
we aim to reconstruct whole genome architecture in tumor samples at a base pair
resolution. Base pair resolution is important because it allows us determine the time of
origin of mutations (by estimating the allele frequency of the alternate allele) and
mechanism (by estimating the amount of homology at the breakpoint junction).

During the first year of the project, we based our analysis on two different yet
supplementary sets of whole genome sequencing cancer datasets.

- A cohort of 64 different tumor datasets (7 distinct tumor types) from The Cancer
Genome Atlas (TCGA) that included 12 basal like breast cancers tumor normal pairs.
Details of the datasets, including the number of read-pairs and genomic coverage
has been included in table 1.

- Three tumor subpopulations and a normal diploid from a 59-year-old triple negative
(ER-, PR-, Her2) breast cancer patient who did not receive chemotherapy prior to
lumpectomy. The sample was collected in collaboration with Dr. Nicholas Navin at
the Texas MD Anderson cancer center, who developed an approach (Ploidy-Seq) to
isolate and sequence rare tumor subpopulations from the same tumor sample. The
patient’s tumor was sampled from two spatially distinct regions and three
subpopulations were flow-sorted by differences in DNA ploidy (in addition to the
normal stromal cells). Each subpopulation was deep-sequenced at high coverage
(mean 58X) on the lllumina HiSeq2000 system to identify the full spectrum of



somatic mutations, including point mutations, indels, copy number aberrations and
structural variants

In the following sections we shall describe the methodologies employed in both cases
and give a summary of key results achieved.

A. Breakpoint profiling of 64 cancer genomes reveals numerous complex
rearrangements spawned by homology-independent mechanisms (Malhotra A. et.
al. - Manuscript under review at Genome Research)

Abstract: Tumor genomes are generally thought to evolve through a gradual
accumulation of mutations, but the observation that extraordinarily complex
rearrangements can arise through single mutational events suggests that evolution may
be accelerated by punctuated changes in genome architecture. To assess the prevalence
and origins of complex genomic rearrangements (CGRs), we mapped 6,179 somatic
structural variation (SV) breakpoints in 64 cancer genomes from 7 tumor types
(including 12 tumor/normal dataset pairs from basal-like breast tumors) and
systematically screened for CGRs comprising 3 or more interconnected breakpoints. We
find that CGRs are extremely common: 154 rearrangements comprise 25% of all somatic
breakpoints and 75% of tumors exhibit at least one CGR. Based on copy number
profiling, 63% of CGRs are consistent with originating through a single mutational event.
CGRs have diverse architectures including focal breakpoint clusters, large-scale
rearrangements joining breakpoint clusters from one or more chromosomes, and
staggeringly complex chromothripsis events. Notably, chromothripsis is a variable
phenotype amongst different tumor types, and has a significantly higher incidence in
Glioblastoma samples (39%) relative to other tumor types (9%, none in breast cancers).
Chromothripsis breakpoints also show significantly elevated intra-tumor allele
frequencies relative to simple SVs, which indicates they arise early during tumorigenesis
or confer selective advantage. Finally, assembly and analysis of 4002 somatic and 6994
germline breakpoint sequences reveals that somatic breakpoints show significantly less
microhomology and this effect is stronger at CGRs than at simple SVs. These results are
inconsistent with replication-based models of CGR genesis, and strongly argue that non-
homologous repair of concurrently-arising DNA double-strand breaks is the
predominant mechanism underlying complex rearrangements in somatic genomes.

This study includes 64 tumors from The Cancer Genome Atlas (TCGA) including 12 basal-
like breast cancers (BRCA) (Details in table 1). Tumor and matched normal samples, in
the form of blood or normal solid tissue (in one case both), were subjected to Illumina
paired-end sequencing by TCGA.

To identify SV breakpoints we used HYDRA-MULTI, a new multi-sample version of our
HYDRA paired-end mapping algorithm (Quinlan et al. 2010) that uses population-based
readpair clustering (Quinlan et al. 2011). Readpairs from all 64 tumor samples and 65
normal samples were combined into a single clustering step, which enabled



simultaneous measurement of the evidence for each breakpoint in each sample. This
method and several filtering steps (manuscript in review) identified 6,179 (1,657 in
breast cancers) somatic rearrangement breakpoints. For simplicity, we classify
breakpoints as deletions, tandem duplications, inversions, intra-chromosomal
rearrangements (>1mb) and inter-chromosomal rearrangements based purely on the
orientation and mapping distance of breakpoint-defining readpairs. This classification
may not necessarily reflect variant type, especially at complex rearrangements.
Different tumors and tumor types show different numbers and types of breakpoints
(Fig. 1, with red box highlighting the breast cancer samples), as reported previously
(Stratton 2011), with BRCA and LUSC samples often showing large numbers of tandem
duplications, and GBM samples showing numerous large-scale rearrangements. We also
identified 27,093 germline breakpoints, of which we use a high-confidence set of 9964
deletions and 1980 tandem duplications as controls in subsequent analyses.

Since DNA was not available, we used local de novo breakpoint assembly to assess the
validation rate. We modified the SGA assembler (Simpson and Durbin 2012) to report all
paths through the assembly string graph, rather than just a consensus contig. This
allows for assembly of breakpoints present at relatively low (<50%) allele frequencies
within tumor cell populations, as the vast majority of somatic SVs are. Contigs exhibiting
split alignments consistent with the original breakpoint prediction were judged to
validate the call (Fig. 2A). Using this method we validated 64.8% of somatic breakpoints
and 58.5% of germline control breakpoints (Fig. 2B), with a mean contig length of 875bp
(median 862bp). However, breakpoint assembly is technically difficult and may fail to
produce validating contigs. For example, we were only able to assemble and validate
76.8% of the 5368 deletions that were identified by both our study and the 1000
Genomes Project (Mills et al. 2011), and validated by the latter. Assuming that 100% of
the shared calls are true positives, this implies a validation rate of 84.4% for somatic
breakpoints and 76.2% for germline controls, corresponding to a false discovery rate
(FDR) of 15.6% and 23.8%, respectively.

There is growing evidence that a nontrivial fraction of somatic mutations are complex
genomic rearrangements (CGRs) composed of multiple clustered breakpoints that
cannot be explained by a single DNA end-joining or recombination event (Quinlan and
Hall 2012). Cancer genome sequencing experiments have revealed highly complex
genomic rearrangements involving tens to hundreds of breakpoints that appear to have
arisen through a single catastrophic mutational event termed chromothripsis (Stephens
et al. 2011). However, the true incidence of chromothripsis in cancer, and whether or
not different tumor types are more or less susceptible, remain open questions. These
questions have been difficult to address because studies have used different
methodologies and definitions. Our work here presents us a novel opportunity to study
CGR’s and their prevalence and mechanisms in a large cohort of cancer samples.

To systematically identify CGRs, we developed a simple method involving two steps (Fig.
2C): 1) clustering breakpoints whose mapping positions in the reference genome are



within 100kb of one another; and 2) forming “interconnected chains” between
breakpoint clusters that share calls in common, which is possible because each
breakpoint represents a junction between two distinct loci in the reference genome.
The end result is that all the breakpoints that comprise a complex event are
interconnected and no farther than 100kb from another breakpoint in the chain.

We defined complex variants as those involving 3 or more distinct breakpoint calls. In
order to minimize chain fragmentation, where distinct subsections of the same
rearrangement may be reported as separate chains due to false negative breakpoint
calls, we merged nearby CGRs using a distance threshold of 1mb. These methods
identified 154 CGRs involving 1542 of the 6179 (25%) total breakpoints. Of these, 90
were "mild" CGRs composed of 3-4 breakpoints, 32 were "moderate" CGRs composed of
5-9 breakpoints and 32 were "extreme" CGRs composed of 10 or more breakpoints.
CGRs were identified in 48 of 64 genomes (75%) representing all 7 cancer types, and are
relatively evenly distributed across tumor types, with most tumors showing 1-5 CGRs
(Fig. 3D). Thus, CGRs are detectable in most cancer genomes. To classify CGRs further
we tried to determine whether the CGR was generated from a one-off complex
mutational event, or from a series of simple mutations that occur in a stepwise fashion.
An informative feature in this determination is the number of DNA copy number states
associated with a CGR. One-off chromothripsis mutations have limited ability to
generate multiple copy number states due to the limited number of chromosomes
inside of a cell, and most reported chromothripsis events involve 3 or fewer states (e.g.,
loss, gain and unaltered). To detect CNAs, we performed circular binary segmentation
(CBS) (Olshen et al. 2004) of GC-normalized read-depth measured in windows
containing 5kb of uniquely mappable sequence (Quinlan et al. 2010). We refer to the
junctions between adjacent genomic segments with distinct copy number as "change-
points". For a CGR to be judged as potentially resulting from a one-off mutation, we
required that it exhibited no more than 3 copy number states and no more than 1
amplified copy number state exceeding 4 copies, and that it was not a "focal
amplification" composed of a single contiguous amplified region. These criteria are
consistent with previous studies of chromothripsis and arguably more precise. Using
these criteria, 97 of the 154 CGRs (63%) are consistent with being generated by a one-
off mutational event. These analyses indicate that complex one-off mutations play a
major role in shaping cancer genome architecture.

The 12 breast cancer samples harbored 19 CGR events (comprising of 70 somatic
breakpoints), however none of the events were chromothripsis. Of the 19, 11 were
generated by mild one-off events and 8 were generated by stepwise CGR events (Table
2).

There are two general repair mechanisms that are supposed to give rise to complex
mutational events in genomes - a) DNA replication based template switching, or b) non-
homologous or microhomology-mediated end joining following chromothripsis events.
We validate each of the HYDRA-MULTI breakpoints by assembling a contig spanning the



breakpoint. This gives us the base-pair resolution at the break that enables us to
calculate the amount of homology and answer the question of mechanism.
Microhomology based events (MMBIR) would require homology at the breakpoint,
where as end-joining would not (Fig 3A). We examined all validated high confidence
somatic and germline breakpoints for homology, and as expected the somatic and
germline breaks showed very different profiles of homology (Fig 3B). Exceedingly few
somatic breakpoints are formed by homologous recombination: whereas 15.6% of
germline breakpoints show more than 20bp of homology, this is true for only 1.1% of
somatic breakpoints. This demonstrates that recombination-based mechanisms play
only a very minor role in tumor genome rearrangement.

We now focus on breakpoints with little or no homology. We judge variants with 2-10bp
of homology to have arisen through MMEJ or MMBIR. We judge variants with 0-1bp of
homology, or a single base insertion (-1bp of alignment overlap), to result from NHEJ.
Somatic breakpoints exhibit significantly less microhomology than germline breakpoints
(Fig. 3B). Considering only the breakpoints with alignment overlap of -1 to 10bp, 68% of
germline breakpoints show microhomology while only 56% of somatic breakpoints do,
and the distributions are significantly different (MWW, p=2.06 x 10-39). Therefore,
MMBIR and/or MMEJ are less common in tumors than in germline lineages. To our
knowledge, this is the first demonstration of a difference in the utilization of
microhomology-mediated mechanisms in germline versus somatic lineages.

To assess the role of microhomology-mediated processes in generating CGRs, we next
compared the homology distribution of breakpoints from simple versus complex
variants (Fig. 3B). Overall, CGR breakpoints are significantly depleted for microhomology
relative to simple SV breakpoints. Whereas 57.8% of simple SV breakpoints show
microhomology, only 49.2% of CGR breakpoints do, and the distribution of alignment
overlap in the range of -1-10bp is significantly different between simple variants and
CGRs (MWW; p=1.82 x 10-4). This demonstrates that MMBIR and/or MMEJ contribute
significantly less to CGR formation than to simple somatic SVs. Taken together, our
breakpoint profiling experiments reveal that the majority of CGRs detectable in tumor
genomes arise through end-joining of concurrently-arising double-stranded DNA breaks,
not replication-based mechanisms.

B. Inferring Mutational Chronology in Breast Cancer by Deep-Sequencing Intratumor
Subpopulations (Wang Y.*, Malhotra A.* et. al. - Manuscript in preparation)

Abstract: Heterogeneity within a tumor sample has confounded both basic and
clinical research for a long time. Here we present an approach called Ploidy-Seq that
combines flow-sorting nuclei by ploidy and next-generation sequencing to identify
somatic mutations in cancer patients by enriching rare tumor subpopulations. Whether
it happens by a gradual accumulation of mutations throughout the life of the tumor, or
by clonal expansion, each of the processes leaves a definite signature in the evolution of
the mutations. By isolating the different clonal populations out of a tumor we aim to



categorize the mutational spectrum of breast cancers. The intra-tumor heterogeneity
would allow us to construct evolutionary trees of tumor progression. This would also
give us an insight into mutational mechanisms chronologically and allow us to answer
the question whether some mechanisms occur early or late in tumor evolution.

To test out the approach we applied it on a tissue sample (T10) from a triple negative
(ER-, PR-, Her2-) breast cancer patient that did not receive any chemotherapy before the
lumpectomy. Based on ploidy, three sub-populations were isolated and flow-sorted
using FACS. These four samples (including stromal cells) were then sequenced using the
massively parallel lllumina HiSeq2000 sequencing platform. The sequence (with a mean
coverage of ~58X) was then used to identify all measures of somatic variations including
point mutations, indels, copy number alterations and structural variants. Although we
are still working on final analysis of the sequences, we can report on some preliminary
results we have obtained.

As shown in Fig 4, after micro-dissection and flow-sorting on a FACS machine, we were
able to isolate four different sub-populations from the sample. Based on the differences
in ploidy, we got a normal diploid population (D), two copy amplified populations (AA
and AB), and one with a less than expected copy number or hypo-diploid sample (H). In
order to distinguish germline from somatic mutations, we filtered all germline SNPs
detected in the stroma from the tumor subpopulations. We then performed set theory
operations to classify mutations as

- early (present in all subpopulations),
- intermediate (shared between two subpopulations) or
- late (exclusive to one subpopulation).

The data processing pipeline that we employed to analyze the samples has been shown
in Fig 5A. We used BWA to perform the basic alignment to the hgl8 reference human
genome. The alignments were then sorted using samtools, and duplicates removed
using Picard. The custom pipeline allows us to identify the full spectrum of somatic
variation, including single nucleotide variation (SNV), Insertion/Deletions (INDEL), Copy
Number Variations (CNV) and Structural Variants (SV).

Novel methodology developed specifically for this project include a split read based
structural variant caller. All the sequence datasets were sequenced from an
approximate ~120-150 bp insert libraries (Fig 5B) with read size of 100bp. This meant
that there was significant overlap between the reads from the two ends of each
segment. This limits the usefulness of traditional paired end mapping approaches, which
rely on a span between the two reads to call structural variants. To overcome this
limitation we came up with the split-read mapping approach (SRM). We select all reads
that a) did not align back to the genome, or b) had an alignment with a soft clip greater
than or equal to 25bp. Our method first attempts to merge these reads into a single
contig. The expectation is that there is sufficient sequence homology amongst the two
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reads to merge them into a single longer contig. We were able to merge between 45%
to 65% of all the reads for the four datasets by this method. We take the merged
contigs, as well as all the reads that did not merge, and align them back to the reference
genome (hgl8) using bwa bwasw. By using bwasw mode for alignment, we are allowing
for more sensitive mappings and multiple mappings per read. The idea behind this
approach is that the discordant reads / contigs have a breakpoint within the sequence,
so the two parts of the same read / contig would map to two different locations i.e. the
two flanking regions of the breakpoint. All the split read mappings (splitters) are then
fed into a clustering algorithm, that forms clusters of overlapping splitters, and then
selects the splitter with maximum support from others in the cluster as representative
of the cluster. The clustering algorithm is smart enough to take in multiple datasets into
a single analysis run, and calculate support for split read calls

We also ran another split read variation caller - CREST (Wang et al, 2011) on the same
datasets. By using two different approaches to the same question, we get more support
and cross validation for our results. We attempted assembly based validation (as
described above) for all the calls made from SRM and CREST. In total we made 657
validated somatic breakpoint predictions (with no support from the diploid, T10D,
population). Only 145 (22%) of these calls were shared between SRM and CREST which
illustrates the power we get from using two different split read variant calling
approaches

As shown in Fig. 6 (A-C), our data suggest that very few 17-49% somatic mutations are
shared between all three non-diploid subpopulations. Based upon these datasets, we
can hypothesize that the mutations that were shared across all the three sub-
populations occurred early in the evolution of the tumor, whereas the mutations that
were private to a subpopulation occurred latest. The ones shared between two sub-
populations were probably steps in the evolution of the tumor from early to late. Based
on this hypothesis, we can begin to create evolutionary neighbor-joining trees that
illustrate our view of the progression of the disease in the patient. Fig 6 D, gives one
example of such a tree composed of the different SNVs that were observed in the
different cases. The tree topology suggests that the T10D evolved into T10H which then
evolved into T10AA and T10AB through common ancestors nl1 and n2. One of the major
events in the evolution of tumor seems to be a genome-doubling event that happened
just before the n2 ancestor. The genes shown were the COSMIC genes that intersected
with the predicted mutations. Although this is preliminary data, we can construct
evolutionary trees with the same topology using the other mutational classes as well.

We are currently in the process of finalizing the analyses from this project and writing
up the manuscript for publication.

Key Research Accomplishments
- We analyzed set of 12 basal type Breast invasive carcinomas (BRCA) and found:
o 1,657 high confidence breakpoints
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19 complex mutations (CGRs)

11 one-off events and 8 stepwise events

None of the BRCA samples showed evidence for chromothripsis.

MMBIR and/or MMEJ are less common in tumors than in germline lineages

CGR breakpoints are significantly depleted for microhomology relative to simple

SV breakpoints.

- Using Ploidy-Seq and next generation sequencing, we began to study the chronology
of mutations in a tumor sample and the extent of tumor heterogeneity. Preliminary
data suggests:

o very few mutations were shared between the populations.

o in this patient sample, the genome evolved from the normal diploid state into a
hypodiploid state, which then further evolved into two highly amplified states
after a genome doubling event.

O O O O O

Reportable Outcomes

- Manuscript - Breakpoint profiling of 64 cancer genomes reveals numerous complex
rearrangements spawned by homology-independent mechanisms, (Malhotra A. et.
al.) is currently under a second round of review at Genome Research.

- Manuscript - Inferring Mutational Chronology in Breast Cancer by Deep-Sequencing
Intratumor Subpopulations (Wang Y.* Malhotra A.* et. al.) is currently in
preparation.

Conclusion

We have performed a large-scale study of complex structural variation in 64 cancer
genomes representing 7 tumor types. We used a new multi-sample paired-end mapping
algorithm to identify 6179 somatically-acquired SV breakpoints, screened for complex
genomic rearrangements, and profiled 4002 somatic and 6973 germline SV breakpoints
at single base resolution. To our knowledge, we have mapped a greater number of
somatic breakpoints than any study to date, and are the first to systematically map CGRs
in a large set of tumor samples.

Our data indicate that complex rearrangements are an important aspect of cancer
genome evolution. Three-fourths of the 64 cancer genomes showed at least one CGR,
and one-quarter of all breakpoints were due to complex rearrangements. Based on copy
number state profiling, 63% of CGRs are consistent with a single one-off mutational
events, and these comprise 13.6% of all somatic breakpoints discovered in this study

We identified chromothripsis events in an unbiased, automated fashion and found a
significantly higher incidence in GBM (38.9%) relative to the other tumor types (8.7%).
This definitively shows that chromothripsis is a variable phenotype among tumor types.

Our data also provide strong evidence that complex tumor genome rearrangements are
formed predominantly through end-joining, not microhomology-mediated break-
induced replication (MMBIR).
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Figure Legends

Fig 1. HYDRA-MULTI breakpoint calls. Stacked bar graph displaying the number of SVs in
each tumor, with different SV classes shown as different colors. Shown on top is the
entire set of calls, below are the calls validated by assembly. In the legend, deletions,
duplications and inversion calls are smaller than 1mb; "intra-chrom" refers to intra-
chromosomal rearrangements larger than 1mb; "inter-chrom" refers to inter-
chromosomal rearrangements.

Fig 2. (A) Assembly-based validation of breakpoint calls. Readpairs where one or the
other read map near a breakpoint prediction were extracted and subjected to de-novo
assembly. Contigs were then aligned to the reference genome. Split-alignments
detecting breakpoints consistent with the original call were judged as validated (B) Table
showing the validation results for different breakpoint callsets. The first row shows the
somatic mutations predicted in a single tumor sample, the second shows "somatic
mutations" (false positives) predicted in a single normal sample, the third shows SV calls
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present in a single tumor-normal pair, the third corresponds to the germline control
breakpoints, the last to germline deletions calls that were also found by 1000 Genomes.
The "Deletions in 1000 Genomes" column show the percentage of deletions that were
found by 1000 Genomes, defined as 50% reciprocal overlap. The last two columns show
the FDR by assembly, and by assessing the number of normal specific somatic
mutations. (C) Method for detecting CGRs. HYDRA-MULTI calls are shown as dotted lines
connecting distinct loci in the reference genome (blue bar at top), with each call
predicting a single novel junction in the test genome corresponding to exactly two loci in
the reference. Breakpoint "clusters" are formed from breakpoints found within a
specified distance (in this case 100kb) of each other in the reference genome, and
complex "chains" are formed from breakpoint calls linking two or more clusters to one
another. (D) The number of CGRs observed for each tumor. (E) The number of
breakpoints in each tumor, broken down by complexity class as shown in the legend.

Fig 3. Breakpoint homology profiles. (A) Measuring homology through "alignment
overlap". Upon split-alignment of breakpoint-containing contigs to the reference
genome, homology is apparent by overlap between the alignments on the query contig
sequence (left), while "flush" breakpoints containing no homologous DNA will have
alignment overlap of approximately zero. SV breakpoints harboring small insertions or
small-scale rearrangements will generally have an unaligned segment, which manifests
as a negative alignment overlap value. Occasionally, negative overlap values may also be
caused by misalignment due to DNA sequencing errors or reference genome assembly
errors at repeats. Here, overlap values less than -1 are colored light blue, those between
-1 and 1 are colored orange, and those greater than 1 are colored dark blue. (B)
Alignment overlap at germline control breakpoints (top), simple SV breakpoints (middle)
and complex SV breakpoints (bottom). To aid visualization, alignment overlap values less
than -1 are shown in light blue, values between -1 and 1 are shown in orange, and
values larger than 1 are shown in dark blue. Please note that the X-axis scale is irregular.
Overlap is measured in 1bp increments until -30 and 30, after which it is measured by
tens. All breakpoints with 100 or more bases of overlap, or -100 and fewer bases, are
shown at the rightmost and leftmost bars. (C) An X-axis zoom of the plot shown in (B).

Fig 4. Overview of the Ploidy-Seq pipeline

Fig 5. Overview of the computational pipeline.

Fig 6. (A) A Venn diagram showing the identified SNVs in the T10AA, (B) T10AB and (C)
T10H. (D) Neighbor joining tree drawn using the SNVs identified from the four different

subpopulations. The indicated genes are the COSMIC genes that were affected by these
SNVs
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Figure 4

1. Two regions were sampled from a frozen tumor specimen. Cells were lysed and
nuclei were isolated and stained with DAPI for I:f)low-sorting
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